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An approximate theory of an axisymmetric film flow with a hydraulic jump on a horizontal plate with a 

laminar liquid jetflowing onto it is proposed. 

Properties of film flows generated by laminar and turbulent jets flowing onto solid surfaces are important for 
organizing the efficient cooling of heated bodies, and also for certain processes of physico-chemical treatment of materials. 
Such flows are distinguished by the specific feature, which is, as a rule, a region where a hydraulic jump appears, within 
which the film thickness can increase several-fold. 

The theory of film flow of an identified type has been considered in [1-3], where field velocities in self-similar 
regions are described in detail and the relation is studied between the liquid layer thicknesses ahead of and beyond the 
hydraulic jump which follows from the requirement of the conservation of momentum in the integral form. However, the real 
physical reason which causes appearance of the jump remains absolutely unclear and additional relationships which enable 
one to finally determine all its characteristics have not been obtained. This problem has been solved for a film flow generated 
by a plane jet in [4], which reports that the appearence of the jump is caused by the necessity of the transition from a thin- 
layer flow in the region ahead of the jump to a quiet gravitational spreading flow of the liquid layer and the liquid draining 
from the area adjacent to the edge of the plate. 

Below, an approximate theory of an axisymmetric film flow with a hydraulic jump on the horizontal plate with a 
laminar jet impinging on it is presented. 

Outside the jet deflection region directly adjoining the impingence zone we can consider the film flow in the thin 
liquid layer approximation [1-4]. Here, before the hydraulic jump, two main regions should be distinguished: before the 
boundary layer (increasing downstream) joins the free surface of the film, where the total flux is composed of a viscous 
boundary layer flow near the plate surface and of a perfect flow outside of it, and the region after the junction, where the 
flow becomes viscous over the entire depth of the liquid layer. In both cases we have boundary layer equations in the form 
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No-slip conditions are prescribed on the plate surface, it is required that OUx/0Z = 0 and p = P0 = const on the free 
surface after its junction with the boundary layer, and the usual conditions of boundary layer theory are formulated before the 
junction. 

Neglecting gravity, self-similar velocity profiles in both regions under consideration have been found on the basis of 
the solution of the problem, formulated in [1, 2]. The approximate representations for them obtained by means of the Shvets 
method are presented in [3]. Exact profiles are expressed in terms of complicated functions of the dimensionless vertical 
coordinate, and approximate profiles taken from [3] are, altogether, not accurate enough for solving the problems of heat and 
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mass transfer in a liquid layer. Therefore, bearing in mind the subsequent applications to heat and mass problems, we use 
here, as in [4], the integral method of Karman-Pohlhausen, presenting the velocity in the form 

�9 3 = z)6 (r), ur (r, z) ---- U (r) f 01), f = -~- (rl - -  rls/3), rl (2) 

where U(r) = Uo, 6(r) < h(r) in the region prior to emergence of the boundary layer onto the free surface and U(r) < Uo, 

6(0 = h(r) in the region of a viscous flow of the entire film. Profile (2) satisfies the imposed boundary conditions. 
Integrating the first equation of (1) with allowance for the other two and formula (2) over dz from zero to 6(r) < 

h(r), we obtain 

39 U2~ - { - + )  6 =  3 vUo dh 
2 8 0  2 8 +-g8 d---7-' (3) 

and the relation between (3(r) and h(r) is defined from the condition of conservation of the fluid flow rate and is of the form 

h (r) ---- aa/2r -t- 36 (r)/8. (4) 

In the region of a viscous flow of the entire film, instead of (3), With allowance for conservation of the flow rate, 

after calculations we have 

78 a4U2o( d + ) 1  + 2 a~ U~ d(rh) 6 va2Uo dh 
875 - ~ r  -}- r~'--'h" ~ r z h --~- d'-""~ ---- -'if" rh ''-----~-" q- gh dr ' (5) 

here 

U (r) = 4a~Uo/5rh. (6) 

It would be natural to introduce the dimensionless variables and parameters 

{~, A, H} = Rel/3 [rRe -213, 6, h}, Re = Uoa Fr = ga 
a v Uo 2 (7) 

Then from (3) and (4) we obtain the equation for A(}) in the form 

280 d--~- (~A)~ = 3~2 + Re-l/3Fr ~ dAd~ 

the solution of which, neglecting gravity (Fr = 0), is 

A = (280/39~) I/2 ~ 2.68~ -1/2. (9) 

The coordinate of the boundary layer emergence onto the free surface is defined from the condition A = H, which yields 

( 78 11/3 ,0.4467,  
~x = \ 875 ] 

4 
f-/1 = H (~1) = ~ 1.791. 

5~ 
(10) 

By analogy, from (5) in the variables of (7), we get the equation 

) dH = 6 ~  272 H, 
875272 Re-]/3FrtJH3 ~ d~ 5 - -  87-'~ (11) 

the solution of which at Fr = 0 is 

H = 17_____55 ~ 2 _  C__C_ C = 17"----~5 ~13--h(~1)~i, 
136 ~ ' 136 

(12) 
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Fig. 1. Dependence of z~ and H on ~j. 

Fig. 2. Dependence of H on ~j for different values of ~I~ (figures on the ~ axis) and for the 
values of the parameter log(Re- 1/3Fr ) = _2  (1), - 3 (2), - 4 (3), - 5 (4). 

the integration constant being found under the condition that the value of H equals the one in (10) at ~ = ~1. The velocity at 
the free surface is expressed by equation (6). 

As it follows from (11), the derivative dH/d~ formally tends to infinity when ~ --, ~ - 0, where ~o~ is a root of the 

equation ~2o, I-I3(~o, ) = 272/875Re-X/3Fr, i.e., in a fairly extended film flow the film thickness inevitably grows over a 

certain area, and the validity of Eqs. (1) does not hold in it. This crisis ~s related to an increase in the hydrostatic pressure 
immediately near the solid surface which is caused by gravity in the film with increasing thickness. At ~ = ~** and z = 0 
the condition 0Ur/OZ = 0 is satisfied, similar to that at the point of detachment of a laminar boundary layer from the stream- 

lined surface, indicating that a return flow appears at the plate surface. Such a behavior of the liquid layer is in agreement 
with the concept of Taney and Kuihary mentioned in [2] presenting a hydraulic jump as a result of the film detachment due 
to the appearance of a pressure gradient caused by gravity which retards the flow. 

However, the computed values of ~ are found to be unreasonably large, and experiments show that the hydraulic 

jump starts at ~j = ~_ < < ~ o,. Moreover, as follows from the analysis reported in [2], in the region ahead of the jump H 
<< H(~o,) and the effect of gravity can be neglected. In Fig. 1 the approximate film profiles obtained from (9) and (12) at 
Fr = 0 and by numerical integration of Eqs. (8) and (11) by the Runge-Kutta method of the 4th order at Re-1/3Fr = 10 -4 

(solid curves 1 and 2, respectively) and the profile which follows from a self-similar solution of the problem in [2] neglecting 
gravity (dashed line) are compared. First, it is clear that the fact that the Froude number is nonzero can be significant only 
in the region where the dimensionless thickness of the film is close to H(~, )  which usually is not realized in experiments. 

And second, that the employment of approximation (2) for the velocity profile leads to an error not exceeding 5 % over the 
whole area ahead of the jump. Analogous results follow also from the predictions for other fairly small values of Re-1/3Fr. 

Therefore, for simplicity in subsequent calculations, the effect of gravity in the region under consideration is neglected. In the 
case of a plane film, the equations for dimensionless thicknesses of the boundary layer and the film itself, which are substitut- 
ed for (8) and (11), can be integrated analytically [4]. 

In the region beyond the jump ~+ < ~ < ~R, where ~rt = (R/a) Re-l/3 and ~+ > ~_, the viscous flow of a liquid 
layer where the thickness slowly varies with an increase in the radial coordinate can be described with the aid of equation 

(1 I) as was done previously. The boundary condition of "smooth draining" [3] from the edge of the plate should be presented 
in the form 

d H / c t ~ - , . - -  oo, ~ - - , . ~  . 

This condition is satisfied, if 

H (~R) = He = (875/272 Re - t /3Fr  ~ ) - i / a  ,~ 0,68 (a/R)2/3Rell-~Fr-l/~, 

(13) 

(14) 

and in the entire region under consideration H(~) is a monotonically decreasing function. The latter means that in this region, 
the spreading flow of a liquid layer really occurs under gravity, which obviously cannot be neglected in Eq. (i1). The 
characteristic dependences of H(~) are presented in Fig. 2. 
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Fig. 3. Profiles of the liquid layer H(~j) at 
~R = 4 and Re-1/3Fr = 0.05 (1), 0.01 
(2), 0.001 (3). 

Thus, within a certain interval ~_ < ~ < ~+ the hydraulic jump is found to be necessary for the possibility of the 

transition from the thin film flow determined by the character of the onflowing jet to the regime of a gravitational spreading 
flow relative to the thick liquid layer, which assumes the condition of draining in form (13). 

Next, considering the difference ~+ - ~_ to be relatively small, i.e., actually assuming ~_ ~ ~+ ~ ~j, we neglect 
the hydrodynamic friction in the narrow region of the jump existence, which makes it possible to apply, as in [2-4], the 
condition of conservation of momentum in the form 

h_ i+ 1 2 
- -  urdz, (15) 

0 0 

wherein h_ and h+ are dimensional thicknesses of the film before and after the jump near it. Using the dimensionless 

variables introduced above, we obtain an equation for determining the dimensionless coordinate ~j of the jump 

1 Re_,/3Fr(H~__H:)= 272 ( 1 1 ) 
2 875r H _  H+ ' (16) 

where H_ = H(~j - 0) and H+ = H(~j + 0) follow from the solution of Eq. (11) in the regions ahead of and beyond the 
hydraulic jump. It can be shown that Eq. 16) either has a single physically applicable solution, or has none at all. Character- 

istic profiles of the liquid layer at ~r( = 4 and Re-1/3Fr = 0.05, 0.01 and 0.001 are presented in Fig. 3. Dependences of the 

dimensionless jump radius and the quanties H+ and H_ on ~R and parameter Re-  1/3Fr are shown in Fig. 4. 
The root of Eq. (16) is absent when ~R is smaller than certain minimum and larger than certain maximum values 

depending on R-1/3Fr. Accordingly, the curves in Fig. 4a are cut off at the points corresponding to the extreme values. If ~R 

~min, what corresponds to small plates, the film detaches from the edge without the formation of a hydraulic jump and the 

flow over the entire region is of a dynamic thin-layer nature. On the contrary, if ~R > ~max, which corresponds to large 
plates, then the flow over the entire region is implemented in the regime of gravitational spreading, the initial thickness of the 
film being larger, the larger the plate radius. 

To understand the way the properties of a hydraulic jump depend on the prescribed parameters of the flow, one 

should consider (besides the curves in Figs. 3, 4) the variation of these properties with an increase in the plate size, other 
conditions being equal. When the radius reaches a certain critical value, a jump develops for the first time at the plate edge 
of the film. With a further increase of radius, this jump gradually moves towards the incident jet and its intensity grows (i.e., 
H+ monotonically increases, and H_ monotonically decreases). Finally, when the radius reaches the next critical value, the 

jump actually merges with the oncoming jet, and for radius values exceeding this critical one, the profile of the liquid layer 

is described by the curves like that illustrated in Fig. 2. This all can be clearly seen in Fig. 4a. 
From the physical point of view, the described behavior of the hydraulic jump is determined by an increase in the 

total hydraulic resistance to the flow over the entire region up to the draining of the liquid. The same behavior must be also 
observed in the case when the resistance increase is caused not by an increase in the plate size, but by some other reasons. 
For example, it is possible to increase the resistance over the fixed-radius plate by passing over from the shape of the plate 
which provides "smooth" draining, to the sharp edge, or due to displacement of special rims near the edge, as was done in 
[3]. As follows from the analysis performed, any of these reasons can lead to the jump displacement towards the plate center, 
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Fig. 4. Dependence of the dimensionless radius of the jump ~i and H+, H_ on ~R = 
(R/a)Re -u3 at Re-]/3Fr = 0 (a) and the parameter Re-U3Fr at ~R = 4 (b). 

to the increase in a liquid layer thickness beyond the jump and its decrease ahead of the jump, which is fully in qualitative 
agreement with the experimental results [3]. Similar behavior of the jump, but under unsteady-state conditions, can also be 
observed while the vessel is filling up, with a jet incident on its bottom, which can be easily confirmed by placing a saucer 

under the water faucet jet. 

A quantitative comparison of the theory with experimental data is hampered by the fact that the data'reported in the 
known works are far from being enough for such a comparison. In Fig. 5, nevertheless, the theoretical dependence of w on 
x, where 

Re-I/3Fr ~]H~. -+ I ~j, 
w =  z a 2n~~JH+ , x =  ~l/-"---~- (17) 

are dimensionless quantities introduced by Watson [2], is compared to the experimental results reported in [2] and [3]. An 
agreement between the theory and experiments may be considered altogether satisfactory. A certain systematic discrepancy 
between the theoretical results and most of the experimental data can evidently be attributed to the fact that in the theory the 
finiteness of the jump region width is neglected and self-similar profiles are spread over the parts separating different flow 
regions, in which self-similarity should be certainly lost. 

The theory developed, certainly, does not hold in the region of jet deviation r < to, where the film flow just begins 
to develop. Since this very region is found to be very important for heat and mass applications, let us perform an approxi- 
mate correction of the velocity field over this region near the plate surface. Assume, for simplicity, that for r > r o a self- 

similar flow of the type above develops and for r < r o the flow is established with an axisymmetric boundary layer described 
with the help of the known Blasius series [5]. Using the solution of the problem of a perfect fluid axisymmetric jet on 
flowing onto the plane plate, let us write down the relation for the velocity components near the onflow point [6] 

u, = 0.44Uor/a, u~ = - -0 .88Uoz /a .  

These equations make it possible to determine the first term of the Blasius series for the radial velocity component in the 
boundary layer immediately near the plate surface in the form 

u, = 0.9277.0.44-1/~'-A'8 Re Uorz/a ~ ~ 0 .383VR '~Uorz /a  ~. (18) 

The value of r o can be easily estimated when coincidence is required of (18) with the correspondent expression for u r which 
follows from (2). After simple calculations, it yields 

ro = (0.468) t/3a ~, 0.776a. (19) 

In conclusion, let us briefly discuss the behavior of the heat- and mass-transfer rate along the surface of the plate in 
the flow. The analysis of transfer processes in a liquid layer is a fairly complicated independent problem [7]. Quali- 
tative information, however, can be obtained by considering the limiting case of fairly large Peclet numbers, when the 
k n o w n  
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Fig. 5. Comparison of the relation w = 
f(x) in accordance with (17) (the curve) 

with experimental data reported in [2] and 
[3] (points 1 and 2, respectively). 

(or Sherwood) number have been obtained in [3, 4] and in a number of other works; within the limits of the flow self- 
similarity regions this number decreases inversely proportionally to the square root of r. 

If the self-similar velocity profile of the thin-layer flow is extended over to the region of the jet deviation up to the 
point of onflow,, one can come to the absurd conclusion that it tends to infinity in the vicinity of the indicated point [3, 7]. 
Actually, in this vicinity the velocity of an ideal fluid at the outer boundary of the hydrodynamic boundary layer is not 
constant, but quickly increases with r from zero up to U o. Taking this into account, one comes to the conclusion that within 
the range of the region with a linear size (1), the Nusselt number is approximately constant, which agrees with the experi- 
mental data reported in [8]. An analogous conclusion has been also made for a plane film flow in [4]. 

To get an idea about the character of the Nusselt number variation over the region of a hydraulic jump one should 

take into account the fact that in this region a vortex motion actually develops, forcing back the liquid from the surface and 
providing its mixing. This conforms with the known model of surface restoration, in accordance with which after the 

hydraulic jump a thermal or diffusional boundary layer again starts to grow from zero. Correspondingly, the Nusselt or 

Sherwood number over the region of gravitational spreading flow decreases by the same law as over the region of the thin- 

layer flow before the jump. At the same time, its initial value can be higher than one, obtained over the final region immedi- 
ately ahead of the jump. Thus, we come to a conclusion about the presence of the maximum intensity of heat and mass 
transfer over the region of a hydraulic jump, which agrees with the observations [3] and corresponds to the analysis reported 

in [4]. 

NOTATION 

a, radius of the onflowing jet from the plate; g, free-fall acceleration; h, H, dimensional and dimensionless thickness 

of the spreading film; R, radius of the plate; p, pressure; Uo, velocity of the jet onflow; u r and Uz, velocity components; r 
and z, radial and vertical coordinates; ~ and A, dimensional and dimensionless thicknesses of the boundary layer; ~, dimen- 

sionless radial coordinate; ~7, dimensionless vertical coordinate; Re and Fr, Reynolds and Froude numbers. 
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E F F E C T  O F  T H E  P E R F O R A T I O N  O F  T H E  P I P E L I N E  W A L L  

O N  T H E  V E L O C I T Y  O F  P R O P A G A T I O N  O F  L O N G  

C O M P R E S S I O N  W A V E S  IN A F L U I D  

N. M. Kuznetsov and E. I. Timofeev UDC 539.4.015.532.59 

A model for predicting the velocity o f  a weak compression wave propagating over a fluid in a tube with 
perforated holes is suggested. The fluid is retained in the perforations by surface tension. The wave velocity 
weakly decreases with an increase in the pressure drop over the wave. Examples of  particular predictions are 

given. 

The sound wall and shock wave propagation over the fluid in tubes has specific features which are of interest from 

both theoretical and practical points of view. The speed of sound in such systems can be fairly different from the case of an 

infinite medium. The dependence of the shock wave speed on the pressure can be also quite peculiar. 

The speed of sound C for fluids in tubes has been calculated by N. E. Zhukovsldi [1] and is defined by the equation 

1 + 2ropoC~/lE ' (1) 

where E is the Young modulus for the material of tube walls; r o and e are the radius of the tube and the thickness of its 

walls, respectively (it is assumed that 1 << to). 

We next consider sound waves and finite-amplitude waves in the fluid that occupy the tube with perforated walls. It 

is assumed that the fluid does not wet an external surface of the tube. All perforations are of the same size (diameter A), and 

on the average, are uniformly distributed over the tube surface. It is assumed that the tube is of an infinite length, and that 

the wave length is much larger than other linear sizes in the problem [the tube diameter and average distance (A + B) 

between the perforations]. At the same time, the period when the fluid is present in the wave is large in comparison with the 

time of establishing a static condition of the fluid in perforation holes..Capillary forces prevent the fluid from effluxing out 

of the holes. The maximum increment in pressure P* in the wave at which the capillary forces still retain the fluid in the 

holes (see Fig. 1) is equal to P* = 4a/A. The gravity is not taken into account. This is admissible in the case of a tube in a 

horizontal position in the gravity field and when the inequality a > > pogAr o holds. 

A plane weak shock wave of infinite length propagating over the fluid in the tube (with no allowance for the friction 

against the walls) is completely determined by the equations of conservation of mass, momentum, and isentropic compression 

of a fluid 

ooUo (So + S.a ) = pxU~ (So + ASp) + p~UoSA ; 

(Po + o0ug) (So + s,,) = (P1 + plu, 2) (So + asp)+ (P1 + plug) (sA + Sh); 

P = P (P), P ---- Pl --  Po, P = Pl - -  Po, 

(2) 

(3) 

(4) 
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